nimbix.net/alveo-fpga-tutorial

Today we will look at how to utilize FPGAs to accelerate compute workloads and how to
create a JARVICE™ application using the PushToCompute™ CI/CD pipeline.

The JARVICE platform is a one stop shop for FPGA kernel development, testing, and
deployment. The NIMBIX App Marketplace includes the latest Xilinx SDAccel Development
environment to design FPGA kernels using OpenCL, C/C++, and RTL. We have also purpose
built JARVICE to handle a variety of provisioning schemes to protect 3rd party IP from the end
user.

Xilinx SDAccel

SDAccel is a high-level synthesis tool that abstracts away low level details of a hardware
platform. This allows software developers to leverage the power of FPGAs without extensive
knowledge of the underlying platform. For more information on SDAccel, see here.

For simplicity, we will use a few OpenCL example kernels provided by Xilinx on GitHub.

OpenCL Example [vadd]

A JARVICE account is required to use the NIMBIX cloud. Sign up here

Limited number of trials available for Alveo FPGA platform

To start a new SDAccel session:

e Login into JARVICE
e Select Xilinx SDAccel Development (2018.2 XDF). Note: different from the runtime
environment

112

https://www.nimbix.net/alveo-fpga-tutorial/
https://jarvice.readthedocs.io/en/latest/cicd/
https://www.nimbix.net/app-marketplace/
https://jarvice.readthedocs.io/en/latest/appdef/#using-xilinx-fpga-binaries
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://github.com/Xilinx/SDAccel_Examples
https://www.nimbix.net/contact-us/
https://www.nimbix.net/alveotrial/
https://xilinx-cloud.jarvice.com/

=7 Xilinx SDAccel Development (2018.2 XDF)
SDACC8| From $1.25/hr S

NIMBIX

Xilinx SDAccel Development (2018.2 XDF)

The SDAccel ™ development environment for OpenCL ™, C, and C++, enables up to 25X better performance/watt for data center
application acceleration leveraging FPGAs. SDAccel, member of the SDx ™ family, combines the industry’s first architecturally optimizing
compiler supporting any combination of OpenCL, C, and C++ kernels, along with libraries, deve ...

‘ Desktop Mode ’ Batch Mode

Start Desktop Mode

=7 Xilinx SDAccel Development (2018.2 XDF)
SDACCG' From $1.25/hr X

Desktop Mode

Run and connect via browser or S5H.

GENERAL OPTIONAL

Machine

Machine type 8 core, 64GB RAM (CPU only) (n2) j

Cores 8 $1.25/hr

Click on desktop preview to open session in a web browser

2/12

SO Xilinx SDAccel Development (2018.2 [®©O goog

XDF)(463841)
X 1 node

Command server
Status Processing
Address MNAE-165-254-189-57 jarvice.com

Password (click to show)

Open a Terminal from the Desktop and clone the SDAccel Examples

git clone --depth=1 https://github.com/Xilinx/SDAccel_Examples
cd SDAccel Examples/getting_started/misc/vadd/src
1s

You will see two types of source files:

e host.cpp := C++ source code for host application running on the CPU
e krnl_vadd.cl := OpenCL source code for accelerated kernel running on the FPGA

The host code uses the OpenCL API to interact with the accelerated kernel. Reference card.
The SDAccel Development environment will compile the *.c1 code intoan *.xclbin file for
the targeted FPGA platform. The *.xclbin file contains a bitstream for the FPGA which will
describe the kernels specialized architecture. This process will take several hours depending
on the size of the FPGA. To aid in kernel development, the SDAccel Development environment
includes a CPU and Hardware emulation mode which compiles in minutes and can run without
access to a FPGA accelerator.

To build the vadd example, specify the target mode (emulation vs hardware) and target device.
For example:

cd ~/SDAccel_Examples/getting_started/misc/vadd
make TARGETS=sw_emu DEVICES=xilinx_u250_xdma_201820_1 all

3/12

https://www.khronos.org/files/opencl-quick-reference-card.pdf

The above command will generate vadd and
krnl_vadd.sw_emu.xilinx_u250_xdma_201820_1.xclbin for software emulation of the
Xilinx Alveo u250. Prepare the software emulation environment and run vadd example:

export XCL_EMULATION_MODE=sw_emu
emconfigutil --platform 'xilinx_u250_xdma_201820_1' --nd 1
./vadd

Stop your job using either shutdown from the Desktop menu (logout -> shutdown) or the
shutdown button on the JARVICE dashboard

Alveo options for SDAccel

Flag Options

TARGETS sw_emu, hw_emu, hw

DEVICES x1linx_u200_xdma_201820_1 , xilinx_u250_xdma_201820_1

Additional information on using SDAccel Development environment on Nimbix cloud here

Create FPGA Application on JARVICE

This section will go over how to package the binary files generated by SDAccel into a JARVICE
application. JARVICE apps use the PushToCompute CI/CD pipeline. This walk-through will use
Der to containerize our application with the Xilinx Runtime and give an overview of the
Appdef.json required by JARVICE.

This section is intended to use your computer. Review prerequisites here. Use App Ubuntu
Linux for Intel if running on the Nimbix cloud.

To Start, clone this repository from GitHub:

git clone https://github.com/nimbix/xilinx-tutorial

Our application will require a few SDAccel kernels to illustrate the different capabilities of
JARVICE. Use the attached xilinx u250 xdma_201820_1_golden.tar.gz or generate the
kernels using Build SDAccel bitstreams

Unpack the archive at xilinx-tutorial/docker-build/

mv xilinx_u250_xdma_201820_1_golden.tar.gz <path-to-repo>/xilinx-tutorial/docker-build/
cd <path-to-repo>/xilinx-tutorial/docker-build/
tar -xvf xilinx_u250_xdma_201820_1_golden.tar.gz

This will create an exe and xclbin folder

Build SDAccel bitstreams

Skip this section if using xilinx_u250_xdma_201820_1_golden.tar.gz

4/12

https://platform.jarvice.com/
https://www.nimbix.net/wp-content/uploads/2018/10/NEW-ug1240-sdaccel-nimbix-getting-started-1018-1.pdf
https://jarvice.readthedocs.io/en/latest/cicd/
https://jarvice.readthedocs.io/en/latest/appdef/
https://github.com/nimbix/xilinx-tutorial/blob/master/README.md#prerequisites
https://github.com/nimbix/xilinx-tutorial
https://www.nimbix.net/alveo-fpga-tutorial/#build-sdaccel-bitstreams

The build-scripts/build-xcl-examples.sh uses the JARVICE APIto submit a build job
using the xilinx SDAccel Development environment. The default kernels to build are
sum_scan and vdotprod from getting_started/misc section. Update repo_path and
kernels at the beginning of the script to select different kernel from Xilinx SDAccel
Examples. The kernels stringuses | as adelimiter.

Use the following to build the default SDAccel kernels for the Alveo u250:

./build-scripts/build-xcl-examples.sh -t hw -d xilinx_u250_xdma_201820_1 -u <jarvice-
user> -k <jarvice-apikey>

Replace <jarvice-user> and <jarvice-apikey> with your JARVICE account. Your API key
is listed at https://platform.jarvice.com under the Account menu on the right.

Note We need to build with the hw SDAccel flow. This job will take 6+ hours and automatically
terminate

After submitting a job to JARVICE, the script will ask to copy/paste a password:

Started JARVICE job: 463856
Enter this password at prompt: MCAqQHDS02aEgj3w

This will transfer and run a build script (run.sh) on the JARVICE job. The generated files will
be saved to your Vault

Job 463856 building /data/xcl_pv3/xilinx_u250_xdma_201820_1.tar.gz
Check JARVICE dashboard for status

Transferthe *.tar.gz file to your machine using one of these methods

Create Docker container

The build-scripts/build-docker.sh will create a Docker container for a JARVICE
application utilizing a Xilinx FPGA machine type. docker-build containsthe Dockerfile
and build context for the container. A JARVICE application requires additional metadata
provided by AppDef.json. The FPGA machine types will also require *.xclbin file for each
SDAccel kernel. The docker-build directory should include exe and xclbin directories
from Build SDAccel bitstreams.

See additional information using FPGAs on JARVICE

The Dockerfile is based from Xilinx Runtime available on DockerHub.

FROM nimbix/ubuntu-xrt:<xrt-runtime>

The FPGA *.xclbin files are addedto /opt/example inside the container

5/12

https://jarvice.readthedocs.io/en/latest/api/
https://github.com/Xilinx/SDAccel_Examples
https://platform.jarvice.com/
https://nimbix.zendesk.com/hc/en-us/articles/208083526-How-do-I-transfer-files-to-and-from-JARVICE-
https://jarvice.readthedocs.io/en/latest/appdef/
https://www.nimbix.net/alveo-fpga-tutorial/#build-sdaccel-bitstreams
https://jarvice.readthedocs.io/en/latest/appdef/#using-xilinx-fpga-binaries
https://hub.docker.com/r/nimbix/ubuntu-xrt/tags/

Test FPGA bitstream

ADD xclbin/$DSA/$XCLBIN_PROGRAM /opt/example/test.xclbin

RUN chmod 555 /opt/example/test.xclbin

Add additional FPGA bitstream to demo removal of unused kernels
ADD xclbin/$DSA/$XCLBIN_REMOVE /opt/example/removel.xclbin

ADD xclbin/$DSA/$XCLBIN_REMOVE /opt/example/remove2.xclbin

Test host application

ADD exe/vdotprod /opt/example/vdotprod

The following tags in the Dockerfile arereplaced by build-scripts/build-docker.sh :

Tag Description Sample Value

<Xrt-runtime> Xilinx Runtime version 201802.2.1.83_16.04
<jarvice-machine> JARVICE FPGA machine type nx6u

<xcl-dsa-name> SDAccel DSA xilinx_u250_xdma_201820_1

The default container registry is DockerHub. build-scripts/build-docker.sh script will
build a Docker container and push it to a Docker registry.

Note Pushing to a DockerHub repository that does not exist will create a public repository

docker login
./build-scripts/build-docker.sh <docker_repo> <docker_tag>

<docker_repo> e.g. nimbix/xilinx-tutorial

<docker_tag> e.g. latest

PushToCompute flow

PushToCompute is the final step to create our JARVICE application.

e Logininto JARVICE
e Select PushToCompute from the menu on the right
e Login into your Docker registry from the menu on the left

Docker Registry Compute

| Q X

Dashboard

All Apps
Server: hitps:/find PushToCompute
Username: New Account
Password: Log Out
Logged out Recent

PowerAl - —

Click on the New app button and fill out the form

6/12

https://hub.docker.com/
https://jarvice.readthedocs.io/en/latest/cicd/
https://platform.jarvice.com/

@ Create Application X

m CHANGE ICON

App ID:
Docker Repository:
Git Source URL (to Clone) - required only for building:

System Architecture
Intel x86 64-bit (x86_64) v

[[] Team Visible

"Team Visible" setting applies only to private applications. If the application
is public, this setting is ignored, since public applications cannot be hidden

from team members.

Form Value

App ID xilinx_tutorial

Docker or Singularity Reposit Docker repository used in Create Docker container (e.g. nimbix/xilinx-tutori
ory al:latest)

Git Source URL (to Clone) Leave blank

System Architecture Intel x86 64-bit (x86_64)

This will create a new App card on PushToCompute that is private to your account (or team if
Team Visible was selected).

Click on the menu on the top left of the app card

712

https://www.nimbix.net/alveo-fpga-tutorial/#create-docker-container

Click on Pull to start pull from your Docker Registry

e Use the same menu to check on pull progress from Cﬂ%? :
¥_tutorial

History khill
e Closethe Pull History whenyousee Pull
completed xilinx_tutorial
g Edit r
l¢
— 3
] Delete \
¥, Buid
C= Build+Pull q
N
© Avortsuid
O rul I
. P
@ History I
1
i Download AppDef)

Test FPGA Application JARVICE

Our application is now ready to run on JARVICE. This simple application will runthe vdotprod
example from the Xilinx sbAccel Examples repository on GitHub. The Dockerfile adds the
examples files generated from SDAccel to /opt/example .

/opt/example/removel.xclbin
/opt/example/remove2.xclbin
/opt/example/test.xclbin
/opt/example/vdotprod
/opt/example/run-test.sh

8/12

https://github.com/nimbix/xilinx-tutorial/blob/master/docker-build/Dockerfile

The *.xclbin files are used to configure the FPGA with the desired kernel, vdotprod binary
is the CPU executable, and run-test.sh is a simple exerciser script for our example.

This application supports 3 flows: No Xclbin Protection, Single Xclbin Protection,
and Launch vdotprod w/ Xclbin Protection

Click on the app card from PushToCompute to see the different flows

Xilinx FPGA Protection Test
From $3.00/hr X

NIMBIX

Xilinx FPGA Protection Test

Ubuntu Linux w/ Xilinx FPGA runtime

Launch Vdotprod W/ Xclbin Protection Single Xclbin Protection

No Xclbin Protection

No Xclbin Protection (standard)

The standard FPGA flow passes all *.xclbin files untouched to the user’'s session. The FPGA
can then be configured by the user via the Xilinx runtime.

9/12

5 | Terminal - nimbix@JARVICENAE-OAOA1883: ~
Help

run-test .sh
test .xclbin
vdotprod

Notice all the *.xclbin files are in the user’s session and are ~40MB in size. The file size
indicates the FPGA bitstream is available.

Single Xclbin Protection

This flow uses a JARVICE platform feature to Protect kernel bitstream. The Protect
command in the Appdef.json sets XCLBIN_BITSTREAM_PROGRAM tO
/opt/example/test.xclbin . This instructs the JARVICE platform to configure the FPGA w/
the bitstream contained in /opt/example/test.xclbin while provisioning a user’s job. The
kernel bitstream is then removed from test.xclbin before granting a user access to the job
session.

10/12

https://jarvice.readthedocs.io/en/latest/appdef/#protect-kernel-bitstream
https://github.com/nimbix/xilinx-tutorial/blob/master/docker-build/AppDef.json

Terminal - nimbix@JARVICENAE-0ADA1854: ~
File Edit View Terminal Tabs

run-test.sh
test .xclbin
vdotprod

Notice the file size for test.xclbin after the FPGA bitstream has been removed by the
JARVICE platform. This prevents a user from accessing/copying a kernel bitstream from the
application.

Launch vdotprod w/ Xclbin Protection

The final flow extends Single Xclbin Protection by removing all unused *.xclbin files.

This is done by adding the XCLBIN BITSTREAM PROTECT variable to the worflow command
in Appdef.json. The | character is used as a delimiter to specify multiple files to remove.

11/12

https://github.com/nimbix/xilinx-tutorial/blob/master/docker-build/AppDef.json

Terminal - nimbix@JARVICENAE-0AOA1873:

File Edit WView Terminal Tabs Help

run-test.sh
test .xclbin
vdotprod

The vdotprod example can be run from any flow with:

/opt/example/run-test.sh

Conclusion

This post provided a brief introduction on developing accelerated kernels for FPGAs available
on the NIMBIX cloud. NIMBIX has partnered with Xilinx to offer a one stop shop to develop and
deploy FPGA accelerated applications using the SDAccel Development environment and
leveraging the power of the JARVICE platform. In addition to focusing on performance, we
have extended JARVICE to optionally protect 3rd party IP when using FPGA accelerators. This
added security enables ISVs to offer proprietary accelerated code in the Nimbix application
marketplace.

Get started accelerating applications with the JARVICE platform on the Nimbix cloud today:

e Sign up here
e Limited number of Alveo™ trials available
e Alveo tutorial

12/12

https://jarvice.readthedocs.io/en/latest/
https://jarvice.readthedocs.io/en/latest/appdef/#using-xilinx-fpga-binaries
https://www.nimbix.net/contact-us/
https://www.nimbix.net/alveotrial/
https://www.nimbix.net/alveo-fpga-tutorial/

	Alveo Accelerator Card Tutorial
	Xilinx SDAccel
	OpenCL Example [vadd]
	Alveo options for SDAccel

	Create FPGA Application on JARVICE
	Build SDAccel bitstreams
	Create Docker container
	PushToCompute flow
	Test FPGA Application JARVICE

	Conclusion

