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Introduction
In 2012 Nimbix began running HPC applications using Linux containers and in 2013, launched the world’s first container-
native supercomputing cloud platform called JARVICE™.  This platform was and is novel in various ways.  First, it ran 
applications directly on bare-metal rather than virtual machines, utilizing Linux containers for security 
and multi-tenant isolation, as well as workload mobility.  Second, it provided both a ready-to-run service catalog of 
commercial and open source workflows, in a Software-as-a-Service style, as well as a Platform-as-a-Service interface for 
developers and ISVs to onboard their own custom applications and workflows.  At the time and largely to this day, most 
high performance cloud platforms leverage hypervisor virtualization and provide mainly Infrastructure-
as-a-Service interfaces – mechanisms appropriate for Information Technology professionals but not scientists 
and engineers looking to consume HPC directly.  The Nimbix Cloud, powered by JARVICE, overcame both the performance 
penalties of virtualized processing, as well as the ease of use challenges of IT-focused interfaces as such IaaS.  The 
JARVICE software has since been released as an enterprise platform (called JARVICE XE) for use on-premises or on 3rd 
party infrastructure but retains all the usability and performance benefits (when run on bare-metal and with computational 
accelerators and low latency interconnects) as the Nimbix Cloud itself.

At the time Nimbix began deploying workflows in containers, there was neither a standard stable enterprise-
grade format for packaging applications nor an available orchestration mechanism for deploying said containers 
on machines.  Fast-forwarding to the present, we now take for granted both Docker and technologies such as Kubernetes.  
But before this, Nimbix had to invent the mechanisms and the “art”, in order to bring products to market.  The Nimbix Cloud 
and JARVICE XE have since run millions of containerized workloads in a myriad of different forms, solving real-world HPC 
problems in just about every industry and vertical.  In 2019 Nimbix released HyperHub™ as the marketplace for accelerated 
and containerized applications, delivered as turn-key workflows to the JARVICE platform regardless of what infrastructure 
powers it.  Not only can scientists and engineers consume containerized HPC seamlessly thanks to JARVICE, but ISVs 
supporting these users can monetize and securely distribute their codes without having to reinvent the wheel to do so.

In a somewhat related context, various container web service platforms have begun to emerge over the past few years, 
most notably Kubernetes.  Google released the open -source Kubernetes platform to the world in 2014 as 
an evolution of tools it had used internally to scale web-based applications such as Gmail.  From top to bottom Kubernetes 
is designed to scale web services based on (mainly) Docker-style containers behind load balancers and web proxies known 
as “Ingress” controllers.  The architecture is ideal for delivering stateless request/response-type of services (e.g. RESTful 
APIs and other web applications).  It also really simplifies development of said applications by automating the deployment 
patterns along standardized practices.

Just as JARVICE is not designed to serve out stateless web applications, Kubernetes is not designed to run HPC 
and other tightly coupled workflows efficiently.  Both platforms utilize containers for the runtime of applications, but the 
workloads and compute methods they support are drastically different.  In a world of standardization to improve 
operational efficiency however, it’s not ideal to maintain different types of platforms for different types of applications.  IT 
Organizations increasingly look to consolidate using a “layer cake” approach – e.g. the “infrastructure layer” should be able 
to run any type of application, in order to reduce the need for expensive specialized practices and additional labor.

Higher-level “layers” are there for the specifics, but rely on the underlying layers to cover the basics.  Single-purpose 
platforms are generally phased out in favor of general-purpose ones – look no further than the rise of Unix and Linux 
systems since the 1970s and how they increasingly displaced the mainframe.  For all but the most sensitive government 
and research type of deployments, so too should general-purpose platforms begin to displace traditional HPC.  The 
missing link is the unifying technology to enable both the commodity Enterprise applications with more specific scientific 
and engineering ones on a common infrastructure management layer. As this paper will demonstrate, JARVICE XE 
combined with Kubernetes provides a practical approach to achieve just this.   
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At runtime, a container provides 3 basic 
mechanisms:

1. The filesystem – typically presented
as a fully assembled “jail” that a
containerized application cannot
“escape” from; this also means that
everything the application needs
must exist within this filesystem,
since it can’t easily access the
underlying host to leverage existing
files and directories (unless the
runtime environment is explicitly told
to “bind” files and/or directories from
the host –a practice that should be
executed carefully due to the
inherent security concerns around it).

2. The “namespaces” – in addition to
the filesystem “jail”, it’s important
that containers cannot “see”
processes, network interfaces, and
other objects outside their own
context.  Using namespaces allows
applications to run in isolation both
from each other as well as from the
host system.  A secure containerized
platform such as JARVICE or
Kubernetes will allow running
multiple containers per host, without
those containerized applications
even being aware of each other nor
of those that may be running on the
underlying host operating system
directly.

3. Access controls and resource limits -
in Linux the primary mechanism for
achieving this is known as “cgroups”.
One of the major benefits of
containers versus virtual machines is
the ease with which system devices

can be “passed through” from the 
host to the container.  Unlike with 
VMs there is no need for complex 
paravirtualization nor bus-level 
emulation methods since the 
applications share the same host 
kernel.  It’s, therefore, possible to 
connect devices such as 
computational accelerators 
(FPGAs, GPUs, etc.) to containerized 
applications easily and without 
overhead.  But this must also be 
governed with extreme care as it can 
lead to a containerized application 
accessing any resource on the host 
system without restriction.  Cgroups 
allow container platforms to restrict 
access to devices as well as general 
system resources such as memory 
and CPU cycles with very fine-grained 
control and minimum overhead.

Linux Container 
Basics
A Linux container, most commonly 
formatted as a Docker container, can 
be thought of as just a runtime 
context for application bits.  Unlike a 
virtual machine, a container shares 
the host operating system kernel 
with other containers.  This makes 
containers a much lighter 
mechanism to run applications since 
they do not need to package an 
entire operating system stack with 
kernel and drivers.  Instead, the focus 
is on the encapsulated application 
and its dependencies needed to run 
(shared libraries, configuration files, 
etc.).  Containers can be thought of 
as a type of application virtualization, 
where traditionally virtualization in a 
hypervisor context has been machine 
level (hence the term 
“virtual machine”).

A container at rest provides the files 
an application needs in order to run 
(binaries, scripts, configuration files, 
and libraries), together with some 
metadata to describe how to 
assemble the container runtime 
environment itself.  In Docker terms, 
containers are packaged as stacked 
layers that can be cached individually 
on target systems, but it’s up to the 
runtime environment to assemble 
the filesystem that containerized 
applications operate from.

HPC on Kubernetes
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Container Platform
If containers are the application in a 
container-native context, 
then the container platform is the 
operating system on which things 
run.  The container platform provides 
interfaces for end-users and APIs to 
run and manage containerized 
applications.  JARVICE in the Nimbix 
Cloud is the defacto container-native 
platform for HPC, while Kubernetes is 
increasingly becoming the defacto 
container native platform for web 
service applications.  JARVICE XE 
actually interfaces with Kubernetes to 
run HPC applications on converged IT 
infrastructure.     

An Alternative 
Approach to Linux 
Containers: 
Singularity

While Docker-style containers 
are increasingly ubiquitous and 
general-purpose, another format has 
made some inroads in HPC: 
Singularity.  The main difference 
is in architectural philosophy.  The 
Docker format (and Docker runtime) 
is intended to work in full isolation, 
providing its own network and 
system contexts to each container.  It 
also allows a containerized 
application to gain administrative 
access (also known as “root”) within 
its “jail” and namespaces (see above).  
The container platform must ensure 
that the applications are properly 
resource managed to avoid security 

issues, but this is widely understood.
In the Singularity school of thought, 
containers actually use the host for 
networking and interconnects, and 
do not allow containerized 
applications to gain root privileges 
even in their isolated runtime 
contexts.  The design philosophy is to 
better support workload portability 
within the context of monolithic 
traditional HPC environments where 
everything is already installed 
on the host, such as MPI libraries 
(a key HPC component), etc.  In the 
Docker philosophy, the host provides 
nothing other than the runtime 
environment setup itself to the 
containerized applications.  
Therefore Docker-style containerized 
applications must bring all of their 
own dependencies.  While this 
results in slightly “fatter” images, it 
does simplify running diverse codes 
on the same systems at the same 
time and is much better suited to 
multi-tenant environments such as 
JARVICE.

The Container 
Ecosystem, 
Explained
Container Registry
A remotely accessible object store for 
container images (or containers at 
rest); generally fronted with a RESTful 
API for easy access from clients.  
Popular container registries include 
Docker Hub and gcr.io.  Additionally, 
the Nimbix HyperHub provides 
workflow-level metadata and 
authorization to various container 
registries as a unified interface for 
synchronizing applications across 
clusters automatically.

Container Format
The defacto standard for 
containerized application packaging 
is Docker, but other formats exist as 
well (e.g. Singularity, but see below).  
Formatted images are “pushed” to 
the Container Registry and “pulled” by 
Container Runtimes.

Container Runtime
Once again Docker is the most 
popular container runtime, 
which actually pulls and runs 
containerized applications.  But the 
Open Container Initiative (OCI) allows 
other engines, such as "containerd", 
to run Docker-style containers 
without modification.  What container 
engine runs on a platform is less 
relevant than whether or not it can 
support Docker-style containers, 
given the popularity and vast 
adoption of this format.

HPC on Kubernetes
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Figure 1: Containerized HPC Application Comparison
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service ports.  Scale-out is also 
handled by the container 
platforms, to further reduce 
complexity.  In a Kubernetes 
environment, applications must 
follow simple rules for service 
discovery and the platform takes 
care of the rest.  In a JARVICE 
environment, HPC applications 
are automatically configured in a 
runtime environment conducive 
to seamless MPI and other 
parallel distribution methods 
across nodes.

While container-native applications 
are of course a type of containerized 
application the reverse is not true.  
For example, it is possible (using 
well-understood methods) to 
containerize traditional applications 
for distribution and mobility, be they 
open source or commercial bits.  
Over the years Nimbix developed a 
methodology to do just this, given 
the breadth and complexity of 
existing HPC applications and the 
need to containerize them without 
modification:

1. A container image is built using
the application’s installer.  In
Docker terms, this means running
installation scripts in “silent”
mode (without the user interface,
since there is no opportunity for
user input when building
container images), in the Docker
file itself.  Years of research and
evolution led to highly optimized
layers and support for even the
most complex and extensive
application suites.  Again, the

ISV codes are not container native, 
cannot be broken up into 
microservices, and are simply not 
aware of any sort of container 
runtime.

2. Additional layers are added to
extend the container functionality,
such as the graphical user
interface (e.g. web-based desktop
or shell), 3rd party integrations (e.g.
for “cosimilation” across different
vendor codes), and convenience
(e.g. desktop applications that
users typically run in conjunction
with their HPC codes, such as text
editors, etc). Nimbix has open
sourced the graphical desktop
environment for containers in a
GitHub package called “image-
common”.

3. Workflow scripts, to automate
running applications and plumbing
license server connectivity,
configuring parallel scale
parameters automatically, etc.
These scripts assume a JARVICE
platform underneath but can easily
be emulated locally for unit testing
application workflows at low scale.

4. Metadata for workflow automation
and “trade packaging” – simple
declarative files are layered in,
which help the JARVICE platform
generate user interfaces and
present high-level workflows to
engineers and scientists.  This
helps “construct” commands and
parameters to execute inside the
container image at runtime.
The “trade packaging” includes
descriptive information, screen
shots, and optionally EULA
language, and is used in

While Singularity is making inroads in 
traditional HPC, it is unlikely to 
challenge Docker-style containers for 
general purpose applications, and will 
therefore likely not be relevant in 
unifying HPC and commodity 
applications on converged IT 
infrastructure.

Container Native 
versus Containerized 
Applications with 
Docker

Ideally, applications running in 
containers are container-native.  This 
generally means several things, but 
usually boils down to:

1. Minimized dependencies – only
those libraries and configuration
files needed for the specific
purpose of the container are
packaged; in fact, increasingly
statically linked binaries such as
those produced from the Go
language are replacing
application stacks, further
simplifying and making container
images leaner than ever.

2. Simplified operations – since
containers are intended to be run
on container platforms, it’s not
necessary to package large
frameworks such as scalable
HTTP(S) servers, firewall
software, etc.  The container
platforms usually provide this
functionality and simply proxy
requests to containerized
applications via standardized

HPC on Kubernetes
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With the better part of a decade of 
experience doing this, Nimbix has 
both performed this feat on many 
popular application stacks and 
advised countless developers and 
ISVs on best practices for 
containerizing their own codes in a 
self-service fashion.  The JARVICE 
platform even provides a CI/CD 
pipeline mechanism known as 
PushToCompute™, which can 
further help to enable and deploy 
traditional applications on 
heterogeneous platforms and 
architectures.

generating the service catalog 
for HyperHub.  This metadata is 
isolated and does not interfere 
with non-JARVICE platforms in 
any way – maintainers can 
continue to run their codes on 
generic Docker runtimes 
without JARVICE, but also 
without the end-user benefits of 
workflow automation. 

In effect, all that is needed to 
containerize traditional 
applications is to automate an 
installation script, perform

Figure 2: Sample containerized (not container-native) application running on JARVICE platform

Additionally, the JARVICE Developer 
Documentation includes complete reference.  
Note that while all of this assumes a container 
runtime environment that sets up and mimics a 
dynamic HPC cluster, it is not strictly mandatory 
to use the JARVICE platform itself.

Examples and Reference Material
Nimbix provides various examples of containerized 
traditional and container-native workflows on GitHub.  
These sources can be used as patterns to produce 
Dockerfiles and metadata for various types of HPC 
applications.

HPC on Kubernetes

A practical and comprehensive approach

necessary post-install fixups, and 
develop wrapper mechanisms (e.g. 
workflow scripts) to parameterize 
and dynamically edit configurations 
to adapt to dynamic environments 
at runtime.  A major challenge is 
the ephemeral nature of containers 
– unlike on a workstation or server
there is no persistence unless files
are stored in explicit volumes – so
in some cases, considerable fixups
are needed.

https://github.com/nimbix
https://jarvice.readthedocs.io/


9

HPC on Kubernetes

The following section will examine the options for running HPC workflows on Kubernetes.

JARVICE vs Kubernetes Application Pattern Support
For comparison, the following table illustrates the level of support for various common application patterns between 
Kubernetes and the original JARVICE platform powering the Nimbix Cloud.  For reference, the original JARVICE 
platform predates Kubernetes. 

Pattern Example JARVICE Support Kubernetes Support

Service-oriented 
application (SOA)

Scale-out MVC 
(model/view/

controller) application 
– e.g.: content

management system

Basic: can run single or 
multiple containerized 

images at predetermined 
scale, but does not provide 

automatic load balancing or 
HA.

Full: can run as a multi-container 
image and scale services 

individually, as well as provide 
service discovery and load 

balancing.

HPC: “embarrassingly 
parallel”, or “perfectly 
parallel” application

Monte Carlo 
simulation

Full: container environment 
setup automatically spans 
multiple nodes with scale 

decided at launch; “master” 
node can set up and shard 

data, etc.

Partial: a Kubernetes “Deployment” 
can indeed launch multiple containers 
in parallel, but the scale is “best effort” 
at launch time as “gang scheduling” is 
not possible; also it is not possible for 

the application to perform different 
functions on the  “master” container 

as the “slaves”, so sharding and setup 
must be performed either in advance 

or manually.  This is not architecturally 
compatible with most existing 

applications.

HPC: tightly-coupled 
parallel solver

Computational Fluid 
Dynamics (CFD)

Full: ready-to-run for MPI-
initiated solvers, whether 

direct via mpirun or indirect 
via an application front-end 

to setup data and 
processing.  JARVICE 

provides a dynamic cluster 
complete with fabric setup, 
SSH trust between nodes 
(parallel containers), and 

generated machine files for 
MPI, etc.

None: a Kubernetes “Deployment” is 
not suitable for this mechanism as it 

cannot guarantee scale neither at 
launch nor at runtime, does not 

support “gang scheduling” to queue 
jobs until all parallel resources are 
available, does not automatically 

elect and run code on a “master”, and 
does not automatically configure 

fabric for applications.

AI: Accelerated 
parallel training

Distributed Deep 
Learning (DDL)

Full: supports HPC-style 
deep learning similarly 

to other parallel solvers, 
which is architecturally 

compatible with distributed 
training frameworks such as 

Horovod.

None: for the same reasons as for 
parallel solvers; alternative training 

workflows must be used (assuming 
framework support) when scale is 

needed.

AI: Accelerated
real-time analytics Inference

Full: when using technologies 
such as FPGAs and novel 

inference hardware, JARVICE 
can provision and host single 

or multi-node services at 
predetermined scale. 

Full: assuming Kubernetes plugins 
exist for accelerated hardware, can 
support these stacks much like it 

does SOAs (see above).

HPC on Kubernetes
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construct a machine file and launch 
the MPI-based solver to distribute 
the work.  Obvious drawbacks are 
complexity, as this requires taking 
apart an application or running 
it in different stages, as well as 
managing individual containers 
explicitly.  What’s more, it still does 
not guarantee launch scale as the 
Kubernetes scheduler does not 
support gang scheduling, so rather 
than queue a set of pods until 
the full capacity is available, it will 
simply bind whatever it can and 
continue to do so until all pods are 
bound1.

External control can also be 
performed manually, with a user 
watching the available pods and 
proceeding with the setup once the 
desired scale is bound.

Regardless, establishing SSH trust 
between containers will still be 
required – this can either be done 
with generic trust at build time 
(easy, but not secure), or explicitly 
after launch (more complex and 
difficult to automate in the 
application layer).

Embarrassingly Parallel Solvers 
While a bit simpler to scale, 
embarrassingly (or “perfectly”) 
parallel solvers still need setup and 
may require sharding data before 
launching.  If the platform cannot 
coordinate a guaranteed set of 

containers and hand off control to a 
setup process automatically before 
starting work, similar problems exist 
even though the solver architecture 
lends itself better to a stateless replica 
style of system.
If the algorithm never needs to 
coordinate (not even at setup time), 
this is likely not any sort of HPC solver 
to begin with, but may lend itself well 
to run on a standard Kubernetes 
platform.

HPC on Kubernetes 
with JARVICE XE

JARVICE XE bridges the gap to 
running HPC codes on Kubernetes 
with 2 major advances:          

Two Level HPC Scheduler
The scheduler provides 2 levels, one 
that converts a traditional HPC job 
request into a set of Kubernetes pods, 
and a gang scheduler that binds pods 
to nodes, queuing entire jobs if the 
requested scale is not available.  
Additionally the gang scheduler 
provides the following important 
functions:

1. “Best fit”, ideal for heterogeneous 
deployments –the JARVICE XE 
pod scheduler will always try to 
place pods on nodes with the 
fewest total resource, including 
accelerators, etc.  This is 
different than taking load into 
account, and assuming there is 
no attempt at genuine 
oversubscription, results in 
better resource utilization.

HPC on basic 
Kubernetes

Since the platform itself does not 
provide adequate HPC support (as 
explained above), here are some 
options and workarounds.

Single Pod Solvers
If the need is multi-core/multi-thread 
rather than multi-node, an MPI-based 
solver can be provisioned as a single 
container in a single pod, and bound 
to a single node.  This eliminates the 
need for fabric setup and “master/
slave” type configurations.  The 
solver can simply be launched to use 
shared memory interconnect on the 
provisioned CPU cores and threads.  
Depending on the underlying node 
capacity, this may suffice for some 
forms of HPC solves, but obviously 
restricts scale to whatever can fit on 
a single node.

External Control
For multiple pods, one possible 
workaround is to launch all 
containers in “standby mode” 
– for most applications this means
simply performing an init or
launching an SSH server explicitly.
An external process can then
discover what pods are actually
available for a given deployment,
what the container addresses are,
and proceed to

1  In Kubernetes terms, binding a pod means placing a pod (and its encapsulated containers) on a worker node for processing; this is the equivalent of 
a job scheduler choosing a node to run work on, and in turn running the work.

HPC on Kubernetes
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which is more along the lines of 
what end users expect.  When it 
comes to scheduling batch HPC 
jobs, this is still appropriate for 
“queue and forget” operation, 
where users don’t need to worry 
about resource management at 
the time they schedule work.

4. Tenant isolation – in multi-
tenant environments it’s
often important for security
or compliance reasons to prevent
nodes from running work
belonging to multiple tenants.
Even in single tenant
environments there can still be
regulatory restrictions between
teams of users.  Labeling nodes
and defining resource types that
target them is an obvious way to
achieve this, but that is very static
and may not yield the best
utilization in cases where the
exact machines are not restricted.
Instead, JARVICE XE can ensure
that dynamically, no two tenants
or teams share the same nodes
for work at the same time.

The upper level part of the scheduler 
also presents resource collections to 
users as “machine types”, which is a 
much more natural way for end users 
to select scale and capability when 
running work.  Machine types can of 
course request very granular 
resources, but this complexity can be 
abstracted from the end user, who 
for example simply decides to run a 
job on 32 16 core nodes for a total of 
512 cores using MPI.  JARVICE XE 
converts this request to the 
appropriate pod replica count and

resource request before handing off 
to the pod scheduler for binding.  This 
entire mechanism is opaque to the 
end user, making system operation 
much simpler.

The lower level part of the scheduler 
(also known as the pod scheduler) 
can in fact run side by side with the 
default Kubernetes pod scheduler, 
but of course race conditions may 
exist if competing for the same 
resources.  Kubernetes does not use 
global critical sections when binding 
pods, so it’s possible to 
oversubscribe resource (leading to 
pod eviction) if both the default and 
the JARVICE XE pod scheduler are 
trying to bind pods to the same 
nodes.  The best practice 
is to use labels as well as taints 
to ensure JARVICE has exclusive 
control of scheduling on hardware 
used specifically for HPC.  The 
JARVICE pod scheduler does support 
multiple namespaces, so it’s in fact 
possible to have several deployments 
of JARVICE XE on the same cluster 
scheduling work at the same time 
without the risk of race conditions.

The scheduler is accessible via API or 
via point-and-click web portal.  As 
mentioned above, JARVICE XE uses 
metadata from the applications in the 
HyperHub™ catalog to define 
workflows for the end user, rather 
than requiring users to write PBS or 
Slurm scripts to launch work.

For example, in a cluster where a 
fraction of the nodes have GPUs 
in them, it does not make sense 
to ever schedule CPU-only work 
on them unless all of the CPU-
only nodes are in use.  If only 
current load is taken into 
account, this can easily lead to 
wasted cycles on nodes with 
more scarce and novel devices.  
This scheduler implements 
lessons learned in resource 
management on the Nimbix 
Cloud, which is a multi-tenant 
heterogeneous deployment.

2. Configurable resource weighting
– different service providers may
have different economics when it
comes to what is more valuable –
e.g. large memory nodes versus
GPU nodes.  The JARVICE
XE pod scheduler can be
configured to weigh these
appropriately.

3. Advisory limit support – in multi-
tenant or even multi-user
environments it is sometimes
necessary to restrict the amount
and type of resource certain users
and teams can consume.
JARVICE XE supports self-service
and administrator-imposed limits
even if more resource is available
at the time of scheduling jobs.
This is different than the
namespace limits Kubernetes
already supports, because in that
case trying to exceed limits
results in failed object creation.
In the JARVICE XE case, jobs will
queue when limits are reached,

HPC on Kubernetes
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Figure 3: JARVICE HPC Scheduler Architecture on Kubernetes: submission flow for a sample 64 core batch simulation

completions on their own, so that 
users have the opportunity to 
review workflow parameters and 
retry with the appropriate 
adjustments.  Automatic restarts 
with the same parameters would 
result in an endless loop of 
failures that the end user may 
never detect.

3. Establishes a clear “master/
slave” topology, with a “head
node” design that initiates solvers
to fan work out to worker nodes
(slaves).  This means traditional
HPC codes can run unmodified on
JARVICE, rather than implement
complex master election logic
before they can perform any work.

4. Automatically generates machine
files that can be passed directly
into mpirun command lines, for
example, and ensures that slaves
are ready to receive the request
thanks to established SSH trust,
fabric configuration, etc.  Each job
runs in its own dynamic cluster
environment that presents itself
quite naturally to traditional HPC
software.

5. Supports any type of Kubernetes
PersistentVolumeClaims,
including ReadWriteOnce, and
dynamically shares them across
all nodes in a job.  This means a
user can launch a multi-node job
with a block storage volume,

HPC Runtime Environment
The second major advance 
JARVICE XE brings to Kubernetes 
is the HPC runtime environment, 
created dynamically when jobs 
start.  This environment performs 
the following functions:

1. Configures either a batch run or
an interactive interface based on
parameters from the scheduler’s
workflow request

2. Ensures finite completion of
workflows, whether solvers
succeed or fail (by default, using
the Kubernetes “Job” API, failed
solvers would restart
automatically); since failures are
a normal part of HPC job
processing, it’s important these
are captured and treated as

HPC on Kubernetes
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As mentioned above, Nimbix 
provides web-based desktop 
environments as open source 
layers for any container, so this is 
a very effective way to provide 
graphical user interfaces to 
traditional HPC applications.  
JARVICE XE uses secure tokens 
to ensure users do not gain 
access to each other’s desktops 
unless they explicitly share links 
or impersonate each other (an 
optional feature of JARVICE XE).

High Scale versus 
High Throughput Job 
Scheduling

Job scheduler requirements often 
conflate use cases and it’s important 
to understand the difference.  
JARVICE XE, at the platform level, 
provides a high scale job scheduler, 
meaning that users can submit jobs 
that run on many machines 
at once.  Jobs can however take 
several seconds to several minutes 
(depending on workflow complexity, 
container cache status, etc.) to start 
processing.  The platform-level 
scheduler itself is appropriate for 
running large jobs that take a finite 
but considerable amount of compute 
time to execute.  This is again 
inspired by serving on-demand HPC 
from the Nimbix Cloud for the better 
part of a decade.  Most engineering/

simulation or distributed deep 
learning jobs take several minutes, 
hours, or days to run, even at scale.

For high-throughput scheduling, it’s 
best to not rely on the platform itself 
to run the individual jobs. This is 
where it’s appropriate to schedule a 
single large job as a dynamic cluster, 
and then embed a job scheduler 
inside it.  Nimbix provides a simple 
example pattern on HyperHub for this 
called  “HPC Test Environment” 
(container source available on 
GitHub), which actually deploys a 
Slurm cluster dynamically that is 
ready to schedule work once it starts.  
While commonly used for testing or 
for providing on-demand academic-
style clusters to end users, this base 
image also fits certain use cases very 
well, like many bioinformatic codes 
that tend to run array jobs on 
sequencer data, etc.  Once the job 
starts and the embedded scheduler is 
fully configured, job submission 
latency within the dynamic cluster is 
no different than on physical static 
systems.  It then becomes efficient to 
run many short-lived jobs without 
incurring platform overhead of 
provisioning containers and other 
objects on infrastructure underneath.  
The obvious drawback is that in an 
on-demand environment, a user 
consumes all of the resource for the 
duration of the dynamic cluster’s 
lifetime, versus jobs ending and

and the solver will automatically 
get shared filesystem access 
from all nodes without the risk 
of data corruption or indefinite 
queuing due to storage 
contention.  JARVICE XE also 
supports NFS and CephFS 
shared filesystems directly 
without the need to manage 
Kubernetes volumes 
underneath, if so desired.  
Additionally, JARVICE XE’s 
runtime environment can attach 
storage interfaces that are not 
natively supported in 
Kubernetes, by defining host-
level mount points as part of 
machine definitions.  This 
enables parallel storage 
systems such as WekaIO2.

6. Supports network-mounted home
directories, based on user login,
including for automatically deriving
user identity ID’s (UID and GID)
from login name and files in their
network mounted home
directories; this eliminates the
need for complex configurations in
containers in order to access
ActiveDirectory, etc.

7. Manages secrets, configurations,
services, and ingress automatically
on a per-job basis. For example, if
a user runs an interactive job,
JARVICE XE will automatically
configure an ingress for it so that
the end user can access it
remotely via a web browser.

2 Host mounts bound into containers should be used with great care and only when necessary, such as when the storage technology does not lend 
itself to being managed with technologies such as the Container Storage Interface (CSI).  The JARVICE platform provides appropriate controls for 
specific patterns only.
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https://github.com/nimbix/app-hpctest
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Converged deployments benefit 
organizations in the following ways:
1. Reduction of specialized skills the

same team that manages the IT
infrastructure can now manage
HPC with minimal training; since
JARVICE XE delivers curated
workflows from HyperHub, this
includes HPC application
engineering as the workflows are
already ready to run.

2. Improved utilization – while the best
practice is to segregate HPC and
commodity workloads on the same
cluster, there is no need for
redundant control planes, storage,
or networking; this improves
economies of scale of a cluster, and
makes it easier to plug in
specialized hardware without “step
functions” and complex
administrative interfaces.

3. Data sharing between workloads a
common use case would be
combining an SOA application with
an HPC one on the same
infrastructure.  For example, a full
deep learning pipeline could feature
an SOA-based inference service that
reads trained models from the
same storage that an HPC-based
DDL training workflow produces
either on demand or continuously.
The SOA could trigger training via
web service API when there is new
data, or for reinforcement purposes,
and JARVICE ensures that the DDL
training architecture runs correctly.

4. Migration and recovery
simplification – cluster
administrators can rely on the same
tools and techniques to handle
commodity versus HPC workloads
when there is a need to move,
replicate, or recover a cluster.

relinquishing resources automatically 
in the high-scale platform scheduling 
model.  Either users or applications 
themselves must actually terminate 
the dynamic cluster in the embedded 
scheduler model in order to return 
resources to the system. 

 Converged IT 
Infrastructure with 
Kubernetes and
JARVICE XE

JARVICE XE typically runs as a set of 
services on a Kubernetes cluster, 
deployed via Helm chart.  It’s trivial for 
cluster administrators to apply 
updates and manage JARVICE XE 
itself as any other framework on the 
system.  JARVICE XE handles the 
entire user interface above that, 
including user HPC applications, 
identity, authentication, authorization, 
job control, accounting, and auditing.  
It supports multiple tenants (or 
teams) without having to deploy 
separate instances.  In short, it makes 
enabling HPC on a large Kubernetes 
deployment as straightforward as 
deploying any other types of 
applications.
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Multi and Hybrid 
Cloud with 
JARVICE XE

Because JARVICE XE provides a 
processing API and a common, 
synchronized service catalog 
(from HyperHub), workload 
mobility is very seamless.  The 
same workloads run on any cluster 
providing JARVICE XE, including 
the Nimbix Cloud which retains  
compatibility. 

Even in the case where different 
cloud infrastructures provide 
different types of resources, 
JARVICE XE applications retain 
compatibility, and well-defined 
patterns for machine types and 
resource requests ensure 
portability. JARVICE XE does not 
currently manage data movement 
and migration across multiple 
clouds, but supports whatever 
mechanisms are employed 
underneath to achieve this.  In the 
case where users do not ever run 
work on multiple clouds (but 
different teams of users do), this is 
generally not an issue as the data 
will reside with the compute at all 
times.

JARVICE XE provides some 
additional features to ease multi-
cloud deployments:

1. Helm chart deployment on
Kubernetes clusters makes
managing JARVICE XE on
multiple infrastructures
seamless, including
deploying updates and
changing deployment
parameters
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2. Scripted support for managed
Kubernetes endpoints on public
clouds such as Amazon EKS and
Google GKE; this is a higher level
abstraction than the Helm chart
itself, supporting single command
deployments of JARVICE XE in a
matter of minutes.

3. Public and private application
synchronization across clusters;
not only are upstream HyperHub
applications synced, but also
select private and custom
applications, further improving
workload mobility.

4. Single sign-on with and without
federation; JARVICE XE supports
both Active Directory and SAML2,
allowing user identity to follow
across multiple deployments with
consistency.

5. “Single pane of glass” – the same
JARVICE XE interface operates
any cluster

a. Available Q4 2018: URL-
based federation – users
visit the cluster or zone they
wish to run work on by
targeting its user portal
ingress URL.
b. Available Q2 2020:
administrator and team-
controlled federation from
the same portal URL –users
launch and manage jobs on
multiple clusters from a
single web portal URL.
c. Available Q2 2020: bursting
of jobs from one cluster to
another based on site-
configured policies and rules;
in the JARVICE multi-cloud
model, machine types are
pinned to clusters, so burst
policies define which

Because multi-cloud deployments 
are often a technique for security 
and compliance, JARVICE XE can be 
used to restrict access to compute 
locations for tenants, teams, and 
individual users based on login 
credentials and group 
memberships.  This can also include 
access to applications (e.g. to 
enforce export-control), data sets, 
and even hardware.

In all cases, the underlying 
management, whether single 
or multi cluster, is completely 
transparent to the applications 
themselves.  This truly enables a 
“publish once, run anywhere” model 
for HyperHub application containers. 
containers.
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machines to leverage (provided 
all other constraints are met) 
when the originally requested 
ones are busy.
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Conclusions

• Kubernetes is emerging as the standard Enterprise container deployment platform, but does not support HPC

• JARVICE in the Nimbix Cloud is the leading on-demand HPC platform for containerized applications

• JARVICE XE brings HPC to Kubernetes-managed infrastructure, including a rich (and ever expanding) catalog of
ready-to-run open source and commercial workflows

• JARVICE XE provides a runtime environment for traditional applications that can run unmodified and not need to be
converted to container-native architectures; this is especially valuable when deploying commercial stacks where the
source code is not available nor the architectures configurable enough to change dramatically

• JARVICE XE supports private, hybrid, public, and multi-cloud deployments

• JARVICE XE makes it easy for Enterprise IT departments to add HPC to their portfolio of services without having to build
additional practices, tooling, or specialized skills
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