
HPC on Kubernetes
A practical and comprehensive approach

WHITE PAPER

Leo Reiter
CTO
Nimbix, Inc.

2

Introduction
In 2012 Nimbix began running HPC applications using Linux containers and in 2013, launched the world’s first container-
native supercomputing cloud platform called JARVICE™. This platform was and is novel in various ways. First, it ran
applications directly on bare-metal rather than virtual machines, utilizing Linux containers for security
and multi-tenant isolation, as well as workload mobility. Second, it provided both a ready-to-run service catalog of
commercial and open source workflows, in a Software-as-a-Service style, as well as a Platform-as-a-Service interface for
developers and ISVs to onboard their own custom applications and workflows. At the time and largely to this day, most
high performance cloud platforms leverage hypervisor virtualization and provide mainly Infrastructure-
as-a-Service interfaces – mechanisms appropriate for Information Technology professionals but not scientists
and engineers looking to consume HPC directly. The Nimbix Cloud, powered by JARVICE, overcame both the performance
penalties of virtualized processing, as well as the ease of use challenges of IT-focused interfaces as such IaaS. The
JARVICE software has since been released as an enterprise platform (called JARVICE XE) for use on-premises or on 3rd
party infrastructure but retains all the usability and performance benefits (when run on bare-metal and with computational
accelerators and low latency interconnects) as the Nimbix Cloud itself.

At the time Nimbix began deploying workflows in containers, there was neither a standard stable enterprise-
grade format for packaging applications nor an available orchestration mechanism for deploying said containers
on machines. Fast-forwarding to the present, we now take for granted both Docker and technologies such as Kubernetes.
But before this, Nimbix had to invent the mechanisms and the “art”, in order to bring products to market. The Nimbix Cloud
and JARVICE XE have since run millions of containerized workloads in a myriad of different forms, solving real-world HPC
problems in just about every industry and vertical. In 2019 Nimbix released HyperHub™ as the marketplace for accelerated
and containerized applications, delivered as turn-key workflows to the JARVICE platform regardless of what infrastructure
powers it. Not only can scientists and engineers consume containerized HPC seamlessly thanks to JARVICE, but ISVs
supporting these users can monetize and securely distribute their codes without having to reinvent the wheel to do so.

In a somewhat related context, various container web service platforms have begun to emerge over the past few years,
most notably Kubernetes. Google released the open -source Kubernetes platform to the world in 2014 as
an evolution of tools it had used internally to scale web-based applications such as Gmail. From top to bottom Kubernetes
is designed to scale web services based on (mainly) Docker-style containers behind load balancers and web proxies known
as “Ingress” controllers. The architecture is ideal for delivering stateless request/response-type of services (e.g. RESTful
APIs and other web applications). It also really simplifies development of said applications by automating the deployment
patterns along standardized practices.

Just as JARVICE is not designed to serve out stateless web applications, Kubernetes is not designed to run HPC
and other tightly coupled workflows efficiently. Both platforms utilize containers for the runtime of applications, but the
workloads and compute methods they support are drastically different. In a world of standardization to improve
operational efficiency however, it’s not ideal to maintain different types of platforms for different types of applications. IT
Organizations increasingly look to consolidate using a “layer cake” approach – e.g. the “infrastructure layer” should be able
to run any type of application, in order to reduce the need for expensive specialized practices and additional labor.

Higher-level “layers” are there for the specifics, but rely on the underlying layers to cover the basics. Single-purpose
platforms are generally phased out in favor of general-purpose ones – look no further than the rise of Unix and Linux
systems since the 1970s and how they increasingly displaced the mainframe. For all but the most sensitive government
and research type of deployments, so too should general-purpose platforms begin to displace traditional HPC. The
missing link is the unifying technology to enable both the commodity Enterprise applications with more specific scientific
and engineering ones on a common infrastructure management layer. As this paper will demonstrate, JARVICE XE
combined with Kubernetes provides a practical approach to achieve just this.

HPC on Kubernetes

A practical and comprehensive approach

3

Table of Contents

Linux Container Basics ...

The Container Ecosystem, Explained ..

An Alternative Approach to Linux Containers: Singularity

Container Native versus Containerized Applications with Docker......

HPC on Kubernetes ...

JARVICE vs Kubernetes Application Pattern Support

HPC on basic Kubernetes ..

HPC on Kubernetes with JARVICE XE ...

High Scale versus High Throughput Job Scheduling

Converged IT Infrastructure with Kubernetes and JARVICE XE..........

Multi and Hybrid Cloud with JARVICE XE ..

Conclusions ...

04

05

05

07

09

09

10

10

13

14

15

16

HPC on Kubernetes

A practical and comprehensive approach

4

At runtime, a container provides 3 basic
mechanisms:

1. The filesystem – typically presented
as a fully assembled “jail” that a
containerized application cannot
“escape” from; this also means that
everything the application needs
must exist within this filesystem,
since it can’t easily access the
underlying host to leverage existing
files and directories (unless the
runtime environment is explicitly told
to “bind” files and/or directories from
the host –a practice that should be
executed carefully due to the
inherent security concerns around it).

2. The “namespaces” – in addition to
the filesystem “jail”, it’s important
that containers cannot “see”
processes, network interfaces, and
other objects outside their own
context. Using namespaces allows
applications to run in isolation both
from each other as well as from the
host system. A secure containerized
platform such as JARVICE or
Kubernetes will allow running
multiple containers per host, without
those containerized applications
even being aware of each other nor
of those that may be running on the
underlying host operating system
directly.

3. Access controls and resource limits -
in Linux the primary mechanism for
achieving this is known as “cgroups”.
One of the major benefits of
containers versus virtual machines is
the ease with which system devices

can be “passed through” from the
host to the container. Unlike with
VMs there is no need for complex
paravirtualization nor bus-level
emulation methods since the
applications share the same host
kernel. It’s, therefore, possible to
connect devices such as
computational accelerators
(FPGAs, GPUs, etc.) to containerized
applications easily and without
overhead. But this must also be
governed with extreme care as it can
lead to a containerized application
accessing any resource on the host
system without restriction. Cgroups
allow container platforms to restrict
access to devices as well as general
system resources such as memory
and CPU cycles with very fine-grained
control and minimum overhead.

Linux Container
Basics
A Linux container, most commonly
formatted as a Docker container, can
be thought of as just a runtime
context for application bits. Unlike a
virtual machine, a container shares
the host operating system kernel
with other containers. This makes
containers a much lighter
mechanism to run applications since
they do not need to package an
entire operating system stack with
kernel and drivers. Instead, the focus
is on the encapsulated application
and its dependencies needed to run
(shared libraries, configuration files,
etc.). Containers can be thought of
as a type of application virtualization,
where traditionally virtualization in a
hypervisor context has been machine
level (hence the term
“virtual machine”).

A container at rest provides the files
an application needs in order to run
(binaries, scripts, configuration files,
and libraries), together with some
metadata to describe how to
assemble the container runtime
environment itself. In Docker terms,
containers are packaged as stacked
layers that can be cached individually
on target systems, but it’s up to the
runtime environment to assemble
the filesystem that containerized
applications operate from.

HPC on Kubernetes

A practical and comprehensive approach

5

Container Platform
If containers are the application in a
container-native context,
then the container platform is the
operating system on which things
run. The container platform provides
interfaces for end-users and APIs to
run and manage containerized
applications. JARVICE in the Nimbix
Cloud is the defacto container-native
platform for HPC, while Kubernetes is
increasingly becoming the defacto
container native platform for web
service applications. JARVICE XE
actually interfaces with Kubernetes to
run HPC applications on converged IT
infrastructure.

An Alternative
Approach to Linux
Containers:
Singularity

While Docker-style containers
are increasingly ubiquitous and
general-purpose, another format has
made some inroads in HPC:
Singularity. The main difference
is in architectural philosophy. The
Docker format (and Docker runtime)
is intended to work in full isolation,
providing its own network and
system contexts to each container. It
also allows a containerized
application to gain administrative
access (also known as “root”) within
its “jail” and namespaces (see above).
The container platform must ensure
that the applications are properly
resource managed to avoid security

issues, but this is widely understood.
In the Singularity school of thought,
containers actually use the host for
networking and interconnects, and
do not allow containerized
applications to gain root privileges
even in their isolated runtime
contexts. The design philosophy is to
better support workload portability
within the context of monolithic
traditional HPC environments where
everything is already installed
on the host, such as MPI libraries
(a key HPC component), etc. In the
Docker philosophy, the host provides
nothing other than the runtime
environment setup itself to the
containerized applications.
Therefore Docker-style containerized
applications must bring all of their
own dependencies. While this
results in slightly “fatter” images, it
does simplify running diverse codes
on the same systems at the same
time and is much better suited to
multi-tenant environments such as
JARVICE.

The Container
Ecosystem,
Explained
Container Registry
A remotely accessible object store for
container images (or containers at
rest); generally fronted with a RESTful
API for easy access from clients.
Popular container registries include
Docker Hub and gcr.io. Additionally,
the Nimbix HyperHub provides
workflow-level metadata and
authorization to various container
registries as a unified interface for
synchronizing applications across
clusters automatically.

Container Format
The defacto standard for
containerized application packaging
is Docker, but other formats exist as
well (e.g. Singularity, but see below).
Formatted images are “pushed” to
the Container Registry and “pulled” by
Container Runtimes.

Container Runtime
Once again Docker is the most
popular container runtime,
which actually pulls and runs
containerized applications. But the
Open Container Initiative (OCI) allows
other engines, such as "containerd",
to run Docker-style containers
without modification. What container
engine runs on a platform is less
relevant than whether or not it can
support Docker-style containers,
given the popularity and vast
adoption of this format.

HPC on Kubernetes

A practical and comprehensive approach

6

Figure 1: Containerized HPC Application Comparison

HPC on Kubernetes

A practical and comprehensive approach

7

service ports. Scale-out is also
handled by the container
platforms, to further reduce
complexity. In a Kubernetes
environment, applications must
follow simple rules for service
discovery and the platform takes
care of the rest. In a JARVICE
environment, HPC applications
are automatically configured in a
runtime environment conducive
to seamless MPI and other
parallel distribution methods
across nodes.

While container-native applications
are of course a type of containerized
application the reverse is not true.
For example, it is possible (using
well-understood methods) to
containerize traditional applications
for distribution and mobility, be they
open source or commercial bits.
Over the years Nimbix developed a
methodology to do just this, given
the breadth and complexity of
existing HPC applications and the
need to containerize them without
modification:

1. A container image is built using
the application’s installer. In
Docker terms, this means running
installation scripts in “silent”
mode (without the user interface,
since there is no opportunity for
user input when building
container images), in the Docker
file itself. Years of research and
evolution led to highly optimized
layers and support for even the
most complex and extensive
application suites. Again, the

ISV codes are not container native,
cannot be broken up into
microservices, and are simply not
aware of any sort of container
runtime.

2. Additional layers are added to
extend the container functionality,
such as the graphical user
interface (e.g. web-based desktop
or shell), 3rd party integrations (e.g.
for “cosimilation” across different
vendor codes), and convenience
(e.g. desktop applications that
users typically run in conjunction
with their HPC codes, such as text
editors, etc). Nimbix has open
sourced the graphical desktop
environment for containers in a
GitHub package called “image-
common”.

3. Workflow scripts, to automate
running applications and plumbing
license server connectivity,
configuring parallel scale
parameters automatically, etc.
These scripts assume a JARVICE
platform underneath but can easily
be emulated locally for unit testing
application workflows at low scale.

4. Metadata for workflow automation
and “trade packaging” – simple
declarative files are layered in,
which help the JARVICE platform
generate user interfaces and
present high-level workflows to
engineers and scientists. This
helps “construct” commands and
parameters to execute inside the
container image at runtime.
The “trade packaging” includes
descriptive information, screen
shots, and optionally EULA
language, and is used in

While Singularity is making inroads in
traditional HPC, it is unlikely to
challenge Docker-style containers for
general purpose applications, and will
therefore likely not be relevant in
unifying HPC and commodity
applications on converged IT
infrastructure.

Container Native
versus Containerized
Applications with
Docker

Ideally, applications running in
containers are container-native. This
generally means several things, but
usually boils down to:

1. Minimized dependencies – only
those libraries and configuration
files needed for the specific
purpose of the container are
packaged; in fact, increasingly
statically linked binaries such as
those produced from the Go
language are replacing
application stacks, further
simplifying and making container
images leaner than ever.

2. Simplified operations – since
containers are intended to be run
on container platforms, it’s not
necessary to package large
frameworks such as scalable
HTTP(S) servers, firewall
software, etc. The container
platforms usually provide this
functionality and simply proxy
requests to containerized
applications via standardized

HPC on Kubernetes

A practical and comprehensive approach

8

With the better part of a decade of
experience doing this, Nimbix has
both performed this feat on many
popular application stacks and
advised countless developers and
ISVs on best practices for
containerizing their own codes in a
self-service fashion. The JARVICE
platform even provides a CI/CD
pipeline mechanism known as
PushToCompute™, which can
further help to enable and deploy
traditional applications on
heterogeneous platforms and
architectures.

generating the service catalog
for HyperHub. This metadata is
isolated and does not interfere
with non-JARVICE platforms in
any way – maintainers can
continue to run their codes on
generic Docker runtimes
without JARVICE, but also
without the end-user benefits of
workflow automation.

In effect, all that is needed to
containerize traditional
applications is to automate an
installation script, perform

Figure 2: Sample containerized (not container-native) application running on JARVICE platform

Additionally, the JARVICE Developer
Documentation includes complete reference.
Note that while all of this assumes a container
runtime environment that sets up and mimics a
dynamic HPC cluster, it is not strictly mandatory
to use the JARVICE platform itself.

Examples and Reference Material
Nimbix provides various examples of containerized
traditional and container-native workflows on GitHub.
These sources can be used as patterns to produce
Dockerfiles and metadata for various types of HPC
applications.

HPC on Kubernetes

A practical and comprehensive approach

necessary post-install fixups, and
develop wrapper mechanisms (e.g.
workflow scripts) to parameterize
and dynamically edit configurations
to adapt to dynamic environments
at runtime. A major challenge is
the ephemeral nature of containers
– unlike on a workstation or server
there is no persistence unless files
are stored in explicit volumes – so
in some cases, considerable fixups
are needed.

https://github.com/nimbix
https://jarvice.readthedocs.io/

9

HPC on Kubernetes

The following section will examine the options for running HPC workflows on Kubernetes.

JARVICE vs Kubernetes Application Pattern Support
For comparison, the following table illustrates the level of support for various common application patterns between
Kubernetes and the original JARVICE platform powering the Nimbix Cloud. For reference, the original JARVICE
platform predates Kubernetes.

Pattern Example JARVICE Support Kubernetes Support

Service-oriented
application (SOA)

Scale-out MVC
(model/view/

controller) application
– e.g.: content

management system

Basic: can run single or
multiple containerized

images at predetermined
scale, but does not provide

automatic load balancing or
HA.

Full: can run as a multi-container
image and scale services

individually, as well as provide
service discovery and load

balancing.

HPC: “embarrassingly
parallel”, or “perfectly
parallel” application

Monte Carlo
simulation

Full: container environment
setup automatically spans
multiple nodes with scale

decided at launch; “master”
node can set up and shard

data, etc.

Partial: a Kubernetes “Deployment”
can indeed launch multiple containers
in parallel, but the scale is “best effort”
at launch time as “gang scheduling” is
not possible; also it is not possible for

the application to perform different
functions on the “master” container

as the “slaves”, so sharding and setup
must be performed either in advance

or manually. This is not architecturally
compatible with most existing

applications.

HPC: tightly-coupled
parallel solver

Computational Fluid
Dynamics (CFD)

Full: ready-to-run for MPI-
initiated solvers, whether

direct via mpirun or indirect
via an application front-end

to setup data and
processing. JARVICE

provides a dynamic cluster
complete with fabric setup,
SSH trust between nodes
(parallel containers), and

generated machine files for
MPI, etc.

None: a Kubernetes “Deployment” is
not suitable for this mechanism as it

cannot guarantee scale neither at
launch nor at runtime, does not

support “gang scheduling” to queue
jobs until all parallel resources are
available, does not automatically

elect and run code on a “master”, and
does not automatically configure

fabric for applications.

AI: Accelerated
parallel training

Distributed Deep
Learning (DDL)

Full: supports HPC-style
deep learning similarly

to other parallel solvers,
which is architecturally

compatible with distributed
training frameworks such as

Horovod.

None: for the same reasons as for
parallel solvers; alternative training

workflows must be used (assuming
framework support) when scale is

needed.

AI: Accelerated
real-time analytics Inference

Full: when using technologies
such as FPGAs and novel

inference hardware, JARVICE
can provision and host single

or multi-node services at
predetermined scale.

Full: assuming Kubernetes plugins
exist for accelerated hardware, can
support these stacks much like it

does SOAs (see above).

HPC on Kubernetes

A practical and comprehensive approach

10

construct a machine file and launch
the MPI-based solver to distribute
the work. Obvious drawbacks are
complexity, as this requires taking
apart an application or running
it in different stages, as well as
managing individual containers
explicitly. What’s more, it still does
not guarantee launch scale as the
Kubernetes scheduler does not
support gang scheduling, so rather
than queue a set of pods until
the full capacity is available, it will
simply bind whatever it can and
continue to do so until all pods are
bound1.

External control can also be
performed manually, with a user
watching the available pods and
proceeding with the setup once the
desired scale is bound.

Regardless, establishing SSH trust
between containers will still be
required – this can either be done
with generic trust at build time
(easy, but not secure), or explicitly
after launch (more complex and
difficult to automate in the
application layer).

Embarrassingly Parallel Solvers
While a bit simpler to scale,
embarrassingly (or “perfectly”)
parallel solvers still need setup and
may require sharding data before
launching. If the platform cannot
coordinate a guaranteed set of

containers and hand off control to a
setup process automatically before
starting work, similar problems exist
even though the solver architecture
lends itself better to a stateless replica
style of system.
If the algorithm never needs to
coordinate (not even at setup time),
this is likely not any sort of HPC solver
to begin with, but may lend itself well
to run on a standard Kubernetes
platform.

HPC on Kubernetes
with JARVICE XE

JARVICE XE bridges the gap to
running HPC codes on Kubernetes
with 2 major advances:

Two Level HPC Scheduler
The scheduler provides 2 levels, one
that converts a traditional HPC job
request into a set of Kubernetes pods,
and a gang scheduler that binds pods
to nodes, queuing entire jobs if the
requested scale is not available.
Additionally the gang scheduler
provides the following important
functions:

1. “Best fit”, ideal for heterogeneous
deployments –the JARVICE XE
pod scheduler will always try to
place pods on nodes with the
fewest total resource, including
accelerators, etc. This is
different than taking load into
account, and assuming there is
no attempt at genuine
oversubscription, results in
better resource utilization.

HPC on basic
Kubernetes

Since the platform itself does not
provide adequate HPC support (as
explained above), here are some
options and workarounds.

Single Pod Solvers
If the need is multi-core/multi-thread
rather than multi-node, an MPI-based
solver can be provisioned as a single
container in a single pod, and bound
to a single node. This eliminates the
need for fabric setup and “master/
slave” type configurations. The
solver can simply be launched to use
shared memory interconnect on the
provisioned CPU cores and threads.
Depending on the underlying node
capacity, this may suffice for some
forms of HPC solves, but obviously
restricts scale to whatever can fit on
a single node.

External Control
For multiple pods, one possible
workaround is to launch all
containers in “standby mode”
– for most applications this means
simply performing an init or
launching an SSH server explicitly.
An external process can then
discover what pods are actually
available for a given deployment,
what the container addresses are,
and proceed to

1 In Kubernetes terms, binding a pod means placing a pod (and its encapsulated containers) on a worker node for processing; this is the equivalent of
a job scheduler choosing a node to run work on, and in turn running the work.

HPC on Kubernetes

A practical and comprehensive approach

11

which is more along the lines of
what end users expect. When it
comes to scheduling batch HPC
jobs, this is still appropriate for
“queue and forget” operation,
where users don’t need to worry
about resource management at
the time they schedule work.

4. Tenant isolation – in multi-
tenant environments it’s
often important for security
or compliance reasons to prevent
nodes from running work
belonging to multiple tenants.
Even in single tenant
environments there can still be
regulatory restrictions between
teams of users. Labeling nodes
and defining resource types that
target them is an obvious way to
achieve this, but that is very static
and may not yield the best
utilization in cases where the
exact machines are not restricted.
Instead, JARVICE XE can ensure
that dynamically, no two tenants
or teams share the same nodes
for work at the same time.

The upper level part of the scheduler
also presents resource collections to
users as “machine types”, which is a
much more natural way for end users
to select scale and capability when
running work. Machine types can of
course request very granular
resources, but this complexity can be
abstracted from the end user, who
for example simply decides to run a
job on 32 16 core nodes for a total of
512 cores using MPI. JARVICE XE
converts this request to the
appropriate pod replica count and

resource request before handing off
to the pod scheduler for binding. This
entire mechanism is opaque to the
end user, making system operation
much simpler.

The lower level part of the scheduler
(also known as the pod scheduler)
can in fact run side by side with the
default Kubernetes pod scheduler,
but of course race conditions may
exist if competing for the same
resources. Kubernetes does not use
global critical sections when binding
pods, so it’s possible to
oversubscribe resource (leading to
pod eviction) if both the default and
the JARVICE XE pod scheduler are
trying to bind pods to the same
nodes. The best practice
is to use labels as well as taints
to ensure JARVICE has exclusive
control of scheduling on hardware
used specifically for HPC. The
JARVICE pod scheduler does support
multiple namespaces, so it’s in fact
possible to have several deployments
of JARVICE XE on the same cluster
scheduling work at the same time
without the risk of race conditions.

The scheduler is accessible via API or
via point-and-click web portal. As
mentioned above, JARVICE XE uses
metadata from the applications in the
HyperHub™ catalog to define
workflows for the end user, rather
than requiring users to write PBS or
Slurm scripts to launch work.

For example, in a cluster where a
fraction of the nodes have GPUs
in them, it does not make sense
to ever schedule CPU-only work
on them unless all of the CPU-
only nodes are in use. If only
current load is taken into
account, this can easily lead to
wasted cycles on nodes with
more scarce and novel devices.
This scheduler implements
lessons learned in resource
management on the Nimbix
Cloud, which is a multi-tenant
heterogeneous deployment.

2. Configurable resource weighting
– different service providers may
have different economics when it
comes to what is more valuable –
e.g. large memory nodes versus
GPU nodes. The JARVICE
XE pod scheduler can be
configured to weigh these
appropriately.

3. Advisory limit support – in multi-
tenant or even multi-user
environments it is sometimes
necessary to restrict the amount
and type of resource certain users
and teams can consume.
JARVICE XE supports self-service
and administrator-imposed limits
even if more resource is available
at the time of scheduling jobs.
This is different than the
namespace limits Kubernetes
already supports, because in that
case trying to exceed limits
results in failed object creation.
In the JARVICE XE case, jobs will
queue when limits are reached,

HPC on Kubernetes

A practical and comprehensive approach

12

Figure 3: JARVICE HPC Scheduler Architecture on Kubernetes: submission flow for a sample 64 core batch simulation

completions on their own, so that
users have the opportunity to
review workflow parameters and
retry with the appropriate
adjustments. Automatic restarts
with the same parameters would
result in an endless loop of
failures that the end user may
never detect.

3. Establishes a clear “master/
slave” topology, with a “head
node” design that initiates solvers
to fan work out to worker nodes
(slaves). This means traditional
HPC codes can run unmodified on
JARVICE, rather than implement
complex master election logic
before they can perform any work.

4. Automatically generates machine
files that can be passed directly
into mpirun command lines, for
example, and ensures that slaves
are ready to receive the request
thanks to established SSH trust,
fabric configuration, etc. Each job
runs in its own dynamic cluster
environment that presents itself
quite naturally to traditional HPC
software.

5. Supports any type of Kubernetes
PersistentVolumeClaims,
including ReadWriteOnce, and
dynamically shares them across
all nodes in a job. This means a
user can launch a multi-node job
with a block storage volume,

HPC Runtime Environment
The second major advance
JARVICE XE brings to Kubernetes
is the HPC runtime environment,
created dynamically when jobs
start. This environment performs
the following functions:

1. Configures either a batch run or
an interactive interface based on
parameters from the scheduler’s
workflow request

2. Ensures finite completion of
workflows, whether solvers
succeed or fail (by default, using
the Kubernetes “Job” API, failed
solvers would restart
automatically); since failures are
a normal part of HPC job
processing, it’s important these
are captured and treated as

HPC on Kubernetes

A practical and comprehensive approach

13

As mentioned above, Nimbix
provides web-based desktop
environments as open source
layers for any container, so this is
a very effective way to provide
graphical user interfaces to
traditional HPC applications.
JARVICE XE uses secure tokens
to ensure users do not gain
access to each other’s desktops
unless they explicitly share links
or impersonate each other (an
optional feature of JARVICE XE).

High Scale versus
High Throughput Job
Scheduling

Job scheduler requirements often
conflate use cases and it’s important
to understand the difference.
JARVICE XE, at the platform level,
provides a high scale job scheduler,
meaning that users can submit jobs
that run on many machines
at once. Jobs can however take
several seconds to several minutes
(depending on workflow complexity,
container cache status, etc.) to start
processing. The platform-level
scheduler itself is appropriate for
running large jobs that take a finite
but considerable amount of compute
time to execute. This is again
inspired by serving on-demand HPC
from the Nimbix Cloud for the better
part of a decade. Most engineering/

simulation or distributed deep
learning jobs take several minutes,
hours, or days to run, even at scale.

For high-throughput scheduling, it’s
best to not rely on the platform itself
to run the individual jobs. This is
where it’s appropriate to schedule a
single large job as a dynamic cluster,
and then embed a job scheduler
inside it. Nimbix provides a simple
example pattern on HyperHub for this
called “HPC Test Environment”
(container source available on
GitHub), which actually deploys a
Slurm cluster dynamically that is
ready to schedule work once it starts.
While commonly used for testing or
for providing on-demand academic-
style clusters to end users, this base
image also fits certain use cases very
well, like many bioinformatic codes
that tend to run array jobs on
sequencer data, etc. Once the job
starts and the embedded scheduler is
fully configured, job submission
latency within the dynamic cluster is
no different than on physical static
systems. It then becomes efficient to
run many short-lived jobs without
incurring platform overhead of
provisioning containers and other
objects on infrastructure underneath.
The obvious drawback is that in an
on-demand environment, a user
consumes all of the resource for the
duration of the dynamic cluster’s
lifetime, versus jobs ending and

and the solver will automatically
get shared filesystem access
from all nodes without the risk
of data corruption or indefinite
queuing due to storage
contention. JARVICE XE also
supports NFS and CephFS
shared filesystems directly
without the need to manage
Kubernetes volumes
underneath, if so desired.
Additionally, JARVICE XE’s
runtime environment can attach
storage interfaces that are not
natively supported in
Kubernetes, by defining host-
level mount points as part of
machine definitions. This
enables parallel storage
systems such as WekaIO2.

6. Supports network-mounted home
directories, based on user login,
including for automatically deriving
user identity ID’s (UID and GID)
from login name and files in their
network mounted home
directories; this eliminates the
need for complex configurations in
containers in order to access
ActiveDirectory, etc.

7. Manages secrets, configurations,
services, and ingress automatically
on a per-job basis. For example, if
a user runs an interactive job,
JARVICE XE will automatically
configure an ingress for it so that
the end user can access it
remotely via a web browser.

2 Host mounts bound into containers should be used with great care and only when necessary, such as when the storage technology does not lend
itself to being managed with technologies such as the Container Storage Interface (CSI). The JARVICE platform provides appropriate controls for
specific patterns only.

HPC on Kubernetes

A practical and comprehensive approach

https://github.com/nimbix/app-hpctest

14

Converged deployments benefit
organizations in the following ways:
1. Reduction of specialized skills the

same team that manages the IT
infrastructure can now manage
HPC with minimal training; since
JARVICE XE delivers curated
workflows from HyperHub, this
includes HPC application
engineering as the workflows are
already ready to run.

2. Improved utilization – while the best
practice is to segregate HPC and
commodity workloads on the same
cluster, there is no need for
redundant control planes, storage,
or networking; this improves
economies of scale of a cluster, and
makes it easier to plug in
specialized hardware without “step
functions” and complex
administrative interfaces.

3. Data sharing between workloads a
common use case would be
combining an SOA application with
an HPC one on the same
infrastructure. For example, a full
deep learning pipeline could feature
an SOA-based inference service that
reads trained models from the
same storage that an HPC-based
DDL training workflow produces
either on demand or continuously.
The SOA could trigger training via
web service API when there is new
data, or for reinforcement purposes,
and JARVICE ensures that the DDL
training architecture runs correctly.

4. Migration and recovery
simplification – cluster
administrators can rely on the same
tools and techniques to handle
commodity versus HPC workloads
when there is a need to move,
replicate, or recover a cluster.

relinquishing resources automatically
in the high-scale platform scheduling
model. Either users or applications
themselves must actually terminate
the dynamic cluster in the embedded
scheduler model in order to return
resources to the system.

 Converged IT
Infrastructure with
Kubernetes and
JARVICE XE

JARVICE XE typically runs as a set of
services on a Kubernetes cluster,
deployed via Helm chart. It’s trivial for
cluster administrators to apply
updates and manage JARVICE XE
itself as any other framework on the
system. JARVICE XE handles the
entire user interface above that,
including user HPC applications,
identity, authentication, authorization,
job control, accounting, and auditing.
It supports multiple tenants (or
teams) without having to deploy
separate instances. In short, it makes
enabling HPC on a large Kubernetes
deployment as straightforward as
deploying any other types of
applications.

HPC on Kubernetes

A practical and comprehensive approach

Multi and Hybrid
Cloud with
JARVICE XE

Because JARVICE XE provides a
processing API and a common,
synchronized service catalog
(from HyperHub), workload
mobility is very seamless. The
same workloads run on any cluster
providing JARVICE XE, including
the Nimbix Cloud which retains
compatibility.

Even in the case where different
cloud infrastructures provide
different types of resources,
JARVICE XE applications retain
compatibility, and well-defined
patterns for machine types and
resource requests ensure
portability. JARVICE XE does not
currently manage data movement
and migration across multiple
clouds, but supports whatever
mechanisms are employed
underneath to achieve this. In the
case where users do not ever run
work on multiple clouds (but
different teams of users do), this is
generally not an issue as the data
will reside with the compute at all
times.

JARVICE XE provides some
additional features to ease multi-
cloud deployments:

1. Helm chart deployment on
Kubernetes clusters makes
managing JARVICE XE on
multiple infrastructures
seamless, including
deploying updates and
changing deployment
parameters

15

2. Scripted support for managed
Kubernetes endpoints on public
clouds such as Amazon EKS and
Google GKE; this is a higher level
abstraction than the Helm chart
itself, supporting single command
deployments of JARVICE XE in a
matter of minutes.

3. Public and private application
synchronization across clusters;
not only are upstream HyperHub
applications synced, but also
select private and custom
applications, further improving
workload mobility.

4. Single sign-on with and without
federation; JARVICE XE supports
both Active Directory and SAML2,
allowing user identity to follow
across multiple deployments with
consistency.

5. “Single pane of glass” – the same
JARVICE XE interface operates
any cluster

a. Available Q4 2018: URL-
based federation – users
visit the cluster or zone they
wish to run work on by
targeting its user portal
ingress URL.
b. Available Q2 2020:
administrator and team-
controlled federation from
the same portal URL –users
launch and manage jobs on
multiple clusters from a
single web portal URL.
c. Available Q2 2020: bursting
of jobs from one cluster to
another based on site-
configured policies and rules;
in the JARVICE multi-cloud
model, machine types are
pinned to clusters, so burst
policies define which

Because multi-cloud deployments
are often a technique for security
and compliance, JARVICE XE can be
used to restrict access to compute
locations for tenants, teams, and
individual users based on login
credentials and group
memberships. This can also include
access to applications (e.g. to
enforce export-control), data sets,
and even hardware.

In all cases, the underlying
management, whether single
or multi cluster, is completely
transparent to the applications
themselves. This truly enables a
“publish once, run anywhere” model
for HyperHub application containers.
containers.

HPC on Kubernetes

A practical and comprehensive approach

machines to leverage (provided
all other constraints are met)
when the originally requested
ones are busy.

16

Conclusions

• Kubernetes is emerging as the standard Enterprise container deployment platform, but does not support HPC

• JARVICE in the Nimbix Cloud is the leading on-demand HPC platform for containerized applications

• JARVICE XE brings HPC to Kubernetes-managed infrastructure, including a rich (and ever expanding) catalog of
ready-to-run open source and commercial workflows

• JARVICE XE provides a runtime environment for traditional applications that can run unmodified and not need to be
converted to container-native architectures; this is especially valuable when deploying commercial stacks where the
source code is not available nor the architectures configurable enough to change dramatically

• JARVICE XE supports private, hybrid, public, and multi-cloud deployments

• JARVICE XE makes it easy for Enterprise IT departments to add HPC to their portfolio of services without having to build
additional practices, tooling, or specialized skills

www.Nimbix.net

linkedin.com/company/nimbix facebook.com/nimbix twitter.com/nimbix

Copyright © 2019 Nimbix, Inc

HPC on Kubernetes

A practical and comprehensive approach

